

E-TECH ACADEMY (NEET & IIT-JEE)

1st Floor, New, White House, SG Barve Marg, near Anjuman Islam School, Buddha Colony, Kurla West, Kurla, Mumbai, Maharashtra 400070 Ph: 9833905914, http://www.etechacademy.com/

Sec : YODDHA 2.0NEET BOOSTER TEST-01Date : 30-09-2023Time : 3:20minsMax. Marks: 720

IMPORTANT INSTRUCTION

- 1. The answer sheet is inside this Test Booklet. When you are directed to open the Test booklet, take out the answer sheet and fill in the particulars on OFFICE copy carefully with blue/black ball point pen only.
- 2. The test is of 3 hours duration and the Test booklet contains 200 multiple-choice questions (four options with a single correct answer) from Physics, Chemistry & Biology (Botany & Zoology). 50 questions in each subject are divided into two Sections (A and B) as per details given below.

Section A shall consist of 35 Questions in each subject (Question Nos. 1 to 35, 51 to 85, 101 to 135 and 151 to 185). All questions are compulsory.

Section B shall consist of 15 questions in each subject (Questions Nos. 36 to 50, 86 to 100, 136 to 150 and 186 to 200). In Section B, a candidate needs to attempt any 10 questions out of 15 in each subject. Candidate are advised to read all 15 questions in each subject of Section B before they start attempting the question paper. In the event of a candidate attempting more than ten question, the first ten questions answer by the candidate shall be evaluated.

- **3.** Each questions carries **4 marks**. For each correct response, the candidate will get **4 marks**. For each incorrect response, **1 mark** will be deducted from the total score. The maximum marks are **720**.
- 4. Use Blue/Black ball point Pen only for writing particulars on these page/ marking responses on Answer Sheet.
- 5. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 6. One completion of the test, the candidate must hand over the Answer Sheet (ORIGINAL and OFFICE copy) to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll number anywhere else except in the specified space in the test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 9. No candidate, without special permission of the centre Superintendent or Invigilator, would leave his/her seat.
- 10. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign. (With time) the Attendance Sheet twice. Cases, where a candidate has not signed the attendance sheet second time, will be deemed not to have handed over the Answer Sheet and dealt with as an Unfair Means case.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Room/Hall all cases of unfair means will be dealt with as per the Rules and Regulations of this examination

2

<u>Exam Syllabus</u>

Physics: Basic Maths & Vectors, Units and MChemistry: Mole Concept, Nomenclature, StructBotany: Cell Cycle and Cell Division, Cell the unitZoology: Living World, Animal Kingdom, Bit			rement, Kinematics 1D & 2D of Atom & Periodic Table ife, Mineral Nutrition & BiologicalClassification ecules & Body Fluids and Circulation		
	Part-1 : Physics : Section-A (1-35)		1) 4% 2) 8% 3) 16% 4) 12%		
1.	Consider the following statements and select	6.	A physical quantity z depends on four		
	the correct option		$2 \frac{2}{3}$		
	I. Every measurement by any measuring		observables a, b, c and d, as $z = \frac{d b^3}{\sqrt{c} d^3}$. The		
	instrument has some error		nercentages of error in the measurement of a h		
	II. Every calculated physical quantity that is	percentages of error in the measurement of a, b			
	based on measured values has some error		c and u are $2/6$, $1.5/6$, $4/6$ and $2.5/6$		
	III. A measurement can have more accuracy but		1) 12 25% 2) 16 5% 3) 13 5% A) 14 5%		
	less precision and vice-versa	7	Which is dimensionless?		
	1) I and II 2) II and III	/.	1) Force/acceleration 2) Velocity/acceleration		
	3) II and III 4) I, II and III		3) Volume/area 4) Energy/work		
2.	Surface tension of a liquid is 70 dyne/cm. Its	8.	The length of one rod $l_1 = 3.323$ cm and the		
	value in SI is		other is $l_2 = 3.321$ cm. Both rods were measured		
	1) 70 N/m 2) 7×10^{-2} N/m		with one measuring instrument with least		
	3) $7 \times 10^2 \text{N/m}$ 4) $7 \times 10^3 \text{N/m}$		count 0.001 cm Then $(l_1 - l_2)$ is		
3.	The value of resistance is 10.845 $\boldsymbol{\Omega}$ and the		1) (0.002 ± 0.001) cm 2) (0.002 ± 0.000) cm		
	value of current is 3.23 A. The potential		3) (0.002 ± 0.002) cm 4) None of these		
	difference is 35.02935 volt. Its value in	9.	Distance travelled by a particle at any instant		
	significant number would be		't' can be represented as $S = A (t + B) + Ct^2$.		
	1) 35V 2) 35.0V 3) 35.03V 4) 35.029V		The dimensions of B are		
4.	Error in the measurement of radius of a sphere		1) $[M^0L^1T^{-1}]$ 2) $[M^0L^0T^1]$		
	is 1%. Then error in the measurement of		3) $[M^0L^{-1}T^{-2}]$ 4) $[M^0L^2T^{-2}]$		
	volume is	10.	The density of a material in the shape of a cube		
	1) 1% 2) 5% 3) 3% 4) 8%		is determined by measuring three sides of the		
5.	A thin copper wire of length <i>l</i> metre increases		cube and its mass. If the relative errors in		
	in length by 2% when heated through 10°C.		measuring the mass and length are respectively		
	What is the percentage increase in area when a		1.5% and 1%, the maximum error in		
	square copper sheet of length <i>l</i> metre is heated		determining the density is:		
	through 10°C?		1) 2.5% 2) 3.5% 3) 4.5% 4) 6%		

- 11. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thickness of a thin sheet of Aluminium. Before starting the measurement, it is found that when the two jaws of the screw gauge are brought in contact, the 45th division coincides with the main scale line and the zero of the main scale is barely visible. What is the thickness of the sheet if the main scale reading is 0.5 mm and the 25th division coincides with the main scale line?
 - 1) 0.70 mm 2) 0.50 mm

3) 0.75 mm 4) 0.80 mm

- 12. Which of the following can be zero, when a particle is in motion for some time?
 - 1) Distance2) Displacement3) Speed4) None of these
- 13. Consider the following statements and select the correct statement(s)?

I. If $l_1 = 0.6$ cm ; $l_2 = 0.60$ cm and $l_3 = 0.600$ cm, then l_3 is the most accurate measurement.

II. $l_3 = 0.600$ cm has the least error so it is most accurate.

III. The number 2.746 rounded off to three significant figures is 2.75.

IV. The number 2.743 rounded off to three significant figures is 2.74.

1) I and IV only 2) II and IV only

3) I and II only 4) A11 are correct

14. A body moves in straight line with velocity v_1 for 1/3rd time and for remaining time with v_2 . Find average velocity.

1)
$$\frac{v_1}{3} + \frac{2v_2}{3}$$
 2) $\frac{v_1}{3} + \frac{v_2}{3}$ 3) $\frac{2v_1}{3} + \frac{v_2}{3}$ 4) $v_1 + \frac{2v_2}{3}$

15. The displacement x of a particle along a straight line at time t is given by: $x = a_0 + \frac{a_1 t}{2} + \frac{a_2}{2} t^2$. The acceleration of the particle is

1) $\frac{a_2}{3}$ 2) $\frac{2a_2}{3}$ 3) $\frac{a_1}{2}$ 4) $a_0 + \frac{a_2}{3}$

16. A particle moves 2m east then 4m north then 5 m west. The distance is

1) 11m 2) 10m 3) -11m 4) 5 m

17. The instantaneous velocity of a particle moving in a straight line is given as $v = \alpha t + \beta t^2$, where α and β are constants. The distance travelled by the particle between 1s and 2s is:

1)
$$3\alpha + 7\beta$$

2) $\frac{3}{2}\alpha + \frac{7}{3}\beta$
3) $\frac{\alpha}{2} + \frac{\beta}{3}$
4) $\frac{3}{2}\alpha + \frac{7}{2}\beta$

18. The distance travelled by a particle starting from rest and moving with an acceleration $\frac{4}{3}ms^{-2}$, in the third second is:

1) 6m 2) 4m 3) $\frac{10}{3}m$ 4) $\frac{19}{3}m$

19. The slope of velocity-time graph for motion with uniform velocity is equal to

1) final velocity	2) initial velocity		
3) zero	4) none of these		

20. A stone is dropped into a well in which the level of water is h below the top of the well. If v is velocity of sound, the time T after which the splash is heard is given by

1)
$$T = 2h/v$$
 2) $T = \sqrt{\left(\frac{2h}{g}\right) + \frac{h}{v}}$

3

3) $T = \sqrt{\left(\frac{2h}{v}\right)} + \frac{h}{g}$	4) $T = \sqrt{\left(\frac{h}{2g}\right)} + \frac{2h}{v}$
---	--

- 21. The displacement of a particle is given by $y = a + bt + ct^2 - dt^4$. The initial velocity and acceleration are respectively
 - 1) b, -4d 2) -b, 2c
 - 3) b, 2c 4) 2c, -4d
- 22. The equation represented by the graph below is

y (m)	
$1) y = \frac{1}{2}gt$	2) $y = \frac{-1}{2}gt$
3) $y = \frac{1}{2}gt^2$	4) $y = \frac{-1}{2}gt^{2}$

t(s)→

23. A stone thrown vertically upwards with a speed of 5 m/sec attains a height H₁. Another stone thrown upwards from the same point with a speed of 10 m/sec attains a height H₂. The correct relation between H₁ and H₂ is

1) $H_2 = 4 H_1$ 2) $H_2 = 3 H_1$ 3) $H_1 = 2H_2$ 4) $H_1 = H_2$

24. A moves with 65 km/h while B is coming back of A with 80 km/h. The relative velocity of B with respect to A is

1) 80 km/h	2) 60 km/h
· ·	

- 3) 15 km/h 4) 145 km/h
- 25. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of 0.5 m/s at an angle of 120° with the direction of flow of water. The speed of water in the stream is

1) 1 m/s2) 0.5 m/s3) 0.25 m/s4) 0.433 m/s

26.						
	Column I		Column II			
(A) Cause increase in velocity			(1) Linear motion			
(B)) Negative accelerat	(2) Zero				
(C)) Motion exhibited	by body	(3) Distance			
mo	oving in a straight li	ine				
(D) Area under a spee	ed time	(4) Acceleration			
gra	aph					
(E)) Velocity of an upv	ward	(5) Retardation			
thr	rowing body at the	peak point				
	1) (A)→(4); (B)→((5);C→(1);(I	D)→(3);(E)→(2)			
	2) (A)→(2); (B)→((1);C→(3);(I	D)→(4);(E)→(5)			
	3) (A)→(5); (B)→((2);C→(3);(I	D)→(1);(E)→(4)			
	4) (A)→(2); (B)→((4);C→(1);(I	D)→(3);(E)→(5)			
27.	Two balls are projected at an angle θ and (90 -					
	θ) to the horizon	tal with the	e same speed. The			
	ratio of their max	imum vertio	cal heights is			
	1) 1:1	1				
	3) 1 : tanθ	4) $\tan^2\theta$:	1			
28.	A body project	ted at an	angle with the			
	horizontal has a	range 300	m. If the time of			
	flight is 6 s, then	the horizo	ntal component of			
	velocity is					
	1) 30 ms ⁻¹	2) 50 ms ⁻	1			
	3) 40 ms ⁻¹	4) 45 ms ⁻	1			
29.	29. At the top of the trajectory of a projectile, the					
acceleration is						
	1) maximum	2) minim	um			
	3) zero	4) consta	nt (g)			
30.	The ranges and	heights fo	or two projectiles			
	projected with	the same i	nitial velocitv at			

projected with the same initial velocity at angles 42° and 48° with the horizontal are $R_1 R_2$ and H_1 , H_2 respectively. Choose the correct option :

4

30-09-2023_YODDHA_2.0_NEET_ BOOSTER_TEST-01_QP

- 1) $R_1 > R_2$ and $H_1 = H_2$
- 2) $R_1 = R_2$ and $H_1 < H_2$
- 3) $R_1 < R_2$ and $H_1 < H_2$
- 4) $R_1 = R_2$ and $H_1 = H_2$
- 31. The velocity \vec{v} of a particle moving in the xy -

plane is given by $\vec{v} = (6t - 4t^2)\hat{i} + 8\hat{j}$, with \vec{v} in

m/s and t(>0) in second.

Match the following columns :

Column-I	Colu	mn-II				
(A) Acceleration magnitude is 10 m/s ²	(1)	3/4 s				
at a time						
(B) Acceleration zero at time	(2)	never				
(C) velocity zero at time	(3)	1 s				
(D) The speed 10 m/s at a time	(4)	2 s				
1) (A) \rightarrow (4); (B) \rightarrow (1);C \rightarrow (2);(D) \rightarrow ((3)					
2) (A)→(2); (B)→(4);C→(3);(D)→((1)					
3) (A) \rightarrow (3); (B) \rightarrow (2);C \rightarrow (4);(D) \rightarrow ((1)					
4) (A) \rightarrow (2); (B) \rightarrow (4);C \rightarrow (1);(D) \rightarrow ((3)					
32. A projectile is given an initial velocity of						
$(\hat{i}+2\hat{j})$ m/s where \hat{i} is along the ground and						
\hat{j} is along the vertical. If g =	10 m	1/s ² the				
equation of its trajectory is						
1) $y = 2x-5x^2$ 2) $y = x-5x^2$						
3) $2y = 2x - 5x^2$ (d) $4y = 2x - 2x^2$	3) $2y = 2x - 5x^2$ (d) $4y = 2x - 25x^2$					
33. A projectile is thrown in the upv	ward d	irection				
making an angle of 60° with the horizontal						
direction with a velocity of 147 n	ms ⁻¹ . T	Then the				
time after which its inclinati	on w	ith the				
horizontal is 45°, is						

1) 15 s 2) 10.98 s 3) 5.49 s 4) 2.745 s

34. The time of flight of a projectile on an upward inclined plane depends upon

1) angle of inclination of the plane

- 2) angle of projection
- 3) the value of acceleration due to gravity
- 4) all of the above.
- 35. If u is the initial velocity of a projectile and v is the velocity at any instant, then the maximum horizontal range R_m is equal to

1)
$$R_m = \frac{u^2 \sin 2\theta}{g}$$
 2) $R_m = \frac{v^2}{g}$
3) $R_m = \frac{v^2 \sin 2\theta}{g}$ 4) $R_m = \frac{u^2}{g}$

g

Answer Any Ten Questions

g

36. The equation of a projectile is $y = \sqrt{3}x - \frac{gx^2}{2}$ The angle of projection is given by

1)
$$\tan \theta = \frac{1}{\sqrt{3}}$$
 2) $\tan \theta = \sqrt{3}$ 3) $\frac{\pi}{2}$ 4) zero

37. The resultant of the two vectors having magnitude 2 and 3 is 1. What is the magnitude of their cross product

1) 6 2) 3 3) 1 4) 0

- 38. An object originally at the point (2, 5, 1) cm is given a displacement $8\hat{i} - 2\hat{j} + \hat{k}$ cm. The coordinates of the new position are
 - 1) (10, 3, 2) cm2) (8, -2, + 1) cm3) (0, 0, 0)4) data not correct.
- **39.** 14. The angles which a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ makes with X. Y and Z axes respectively are 1) 60°, 60°, 60° 2) 45°, 45°. 45° 3) 60°, 60°, 45° 4) 45°, 45°, 60°
- 40. Two forces of magnitude F have a resultant of the same magnitude F. The angle between the two forces is
 1) 45°
 2) 120°
 3) 150°
 4) 60°

5

30-09-2023_YODDHA_2.0_NEET_BOOSTER_TEST-01_QP

- 41. A truck travelling due north with 20m/s turns towards west and travels at the same speed. Then the change in velocity is –
 - 1) 40 m/s north-west
 - 2) $20\sqrt{2}$ m/s north-west
 - 3) 40 m/s south-west
 - 4) $20\sqrt{2}$ m/s south-west
- 42. Coordinates of a moving particle are given by
 x = ct² and v = bt². The speed of the particle is given by
 - 1) 2t (c + b) 2) $2t\sqrt{c^2-b^2}$ 3) $t\sqrt{c^2+b^2}$ 4) $2t\sqrt{c^2+b^2}$
- 43. The three vectors OA, OB and OC have the same magnitude R. Then the sum of these vectors have magnitude –

1) R 2) $\sqrt{2}R$ 3) 3R 4) $(1+\sqrt{2})R$

- 44. A particle moves from a point $\left(-2\hat{i}+5\hat{j}\right)$ to
 - $(4\hat{j}+3\hat{k})$ when a force of $(4\hat{i}+3\hat{j})$ N is applied.

How much work has been done by the force?

- 1) 8 J 2) 11 J 3) 5 J 4) 2 J
- 45. If f (x) = $x^2 2x + 4$, then f(x) has:
 - 1) a minimum at x=1.
 - 2) a maximum at x=1.
 - 3) no extreme point.
 - 4) no minimum.
- 46. A vector \vec{A} is directed along 30° west of north direction and another vector \vec{B} along 15° south of east. Their resultant cannot be in _direction.

- 1) North2) East3) North-East4) South
- 47. The unit vector perpendicular to $\hat{i} 2\hat{j} + \hat{k}$ and

$$3\hat{i} + \hat{j} - 2\hat{k} \text{ is}$$
1)
$$\frac{5\hat{i} + 3\hat{j} + 7\hat{k}}{\sqrt{83}}$$
2)
$$\frac{3\hat{i} + 5\hat{j} + 7\hat{k}}{\sqrt{83}}$$
3)
$$\frac{5\hat{i} + 3\hat{j} - 7\hat{k}}{\sqrt{83}}$$
4)
$$\frac{3\hat{i} - 5\hat{j} + 7\hat{k}}{\sqrt{83}}$$

- 48. If for two vectors \vec{A} and \vec{B} , $\vec{A} \times \vec{B} = 0$, then the vectors:
 - 1) are perpendicular to each other.
 - 2) are parallel to each other.
 - 3) act at an angle of 60° .
 - 4) act at an angle of 30° .
- 49. What is the torque of a force $\vec{F} = (2\hat{i} 3\hat{j} + 4\hat{k})$ newton acting at a point $\vec{r} = (3\hat{i} + 2\hat{j} + 3\hat{k})$
 - metre about the origin? (Given: $\vec{\tau} = \vec{r} \times \vec{F}$)
 - 1) $6\hat{i} 6\hat{j} + 12\hat{k}$ 2) $17\hat{i} 6\hat{j} 13\hat{k}$

3)
$$-6\hat{i} + 6\hat{j} - 12\hat{k}$$
 4) $-17\hat{i} + 6\hat{j} - 13\hat{k}$

- 50. The angle between vectors $(\vec{A} \times \vec{B})$ and $(\vec{B} \times \vec{A})$
 - is

1) Zero 2) π 3) $\pi/4$ 4) $\pi/2$

Part-1 : Chemistry : Section-A (51-85)

- 51. General electronic configuration of actionoids is (n-2)f¹⁻¹⁴(n-1)d⁰⁻² ns². Which of the following actinoids have one electron in 6d orbital?
 - a) U (Atomic no. 92)
 - b) Np (Atomic no.93)
 - c) Pu (Atomic no. 94)
 - d) Am (Atomic no. 95)

	01 1					D1 1		1 1		C•
	Choose the correct option		59.	Pa ha	as exception	nal elec	tronic	configuration		
	1) (a, b) 2) (b, c)	3) (c, d)	4) (a, d)			4d ¹⁰ 5	s ⁰ . It belong	gs to		
52.	The element with	the high	est first ionis	sation		1) 4 th	group	2) 6 th	group	
	potential is :					3) 10 th	¹ group	4) Nor	ne of th	ese
	1) Boron	2) Carbo	n		60.	Assert	tion: The f	irst ionis	ation e	nergy of <i>Be</i> is
	3) Nitrogen	4) Oxyge	en			greater	r than boron			
53.	The ion with highe	st radius i	s ?		Reason : $2p$ orbitals have lower energy than 2. orbitals.					energy than 2s
	1) Na ⁺ 2) N ^{3–}	3) F	4) Al ³⁺							
54.	In the series	C, N,	O and F,	the		1) If b	oth assertion	n and rea	ason ar	e true and the
	electronegativity?					reason	is the correc	et explana	ation of	the assertion.
	1) Decreases from C	to F				2) If	both asserti	on and	reason	are true but
	2) Increases from C	to F				reason	is not the	e correct	expla	nation of the
	3) Remains constan	t				asserti	on.			
	4) Decreases from C	to O and	then in			3) If as	ssertion is tru	ie but rea	son is f	alse.
55.	5. The correct order of atomic size is ?					4) If the assertion and reason both are false.				are false.
	1) Be > C > F > Ne				61.	61. Match List-I with List-II and select the correc				ect the correct
	2) Be < C < F < Ne					answe	r using the c	codes giv	en belo	w.
	3) Be > C > F < Ne				-	I jet I	(Successive)	IE)	I ist I	I (Flements)
	4) F < Ne < Be < C					IE.	IE.	IE.		
56.	Elements of the same	me group	in the period	table			$(lr I mol^{-1})$	112,		
	are characterised by	y the same	? F-T			1210				TT
	1) Ionisation potent	ial			1.	1312			A.	H
	2) Electronegativity				2.	520	7297	14810	В.	L1
	3) Electron affinity				3.	900	1758	14810	C.	Be
	4) Number of valen	ce electron	S		4.	800	2428	3660	D.	В
57.	The decreasing o	rder of	second ionis	sation		1) A-2	, B-1, C-4, D	-3 2) A	-3, B-4,	C-2, D-1
	potential of K, Ca	and Ba (Z	: K = 19, Ca	= 20,		3) A -4	I, B-3, C-I, D	9-2 4) A-	-1, В-2,	C-3, D-4
	Ba = 56)				62. ${}_{6}C^{11}$ and ${}_{5}B^{11}$ are called					
	1) K > Ca > Ba	2) Ca > 1	Ba > K			1) Nuc	clear isomers	2) Isob	oars	
	3) Ba > K > Ca	4) K > B	a > Ca			3) Isot	opes	4) Fiss	ion pro	ducts
58.	8. The process requiring the absorption of energy			nergy	63.	The en	ergy of an ex	xicted ele	ctron o	f a H-atom is –
	is?					3.4 eV	. What is the	angular n	noment	um of electron?
	1) $F \rightarrow F^-$	2) H \rightarrow I	H-			1) <u>h</u>	2) <u>h</u>	3) <u>2h</u>	4)	3h
	3) C1 \rightarrow C1 ⁻	4) $O \rightarrow O$	₂ –2			π	2π	΄π	,	π
	-				1					

64.	Principal, azimuthal and magnetic quantum	70. If $n = 6$, the correct sequence of filling of
	numbers are respectively related to	electrons will be
	1) size, shape and orientation	1) ns \rightarrow np \rightarrow (n-1)d \rightarrow (n-2)f
	2) shape, size and orientation	r_{1}
	3) size, orientation and shape	$2) \text{is } \Rightarrow (11-2) \\ 1 \Rightarrow (11-1) \\ 0 \Rightarrow 11 \\ 1 \Rightarrow 11 \\ 1$
	4) None of these	3) ns \rightarrow (n-1)d \rightarrow (n-2)f \rightarrow np
65.	Bohr's model of the atom can explain	$ns \rightarrow (n-2)f \rightarrow np \rightarrow (n-1)d$
	1) The spectrum of H-atom only	4) ····································
	2) The spectrum of hydrogen molecule	71. Which sub-shell is not permissible
	3) The spectrum of atom or ion containing one	1) 2d 2) 4f 3) 6p 4) 3s
	electron only	72. The number of sp^2-sp^2 hybrid σ bonds in the
	4) The solar spectrum	following compound is :
66.	According to Pauli's exclusion principle :	
	1) No two electrons can have the same energy in	
	an orbital	
	2) No two electrons can have the parallel spin in	73. Identify the 3° amines?
	an orbital	1) $(N-H)$ 2) $(N-H)$ Me
	3) As far as possible the electrons fill in different	Ph'
	orbitals	\vec{H} \vec{H} \vec{H}
	4) Electron try to occupy the orbital of lower	Me 4) N-Me
	energy	74. IUPAC name of following compound is
67.	If the radius of first orbit of H-atom is 5 pm,	
	the radius of third orbit Li ²⁺ will be	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ Br
	1) 106 pm2) 23 pm 3) 32 pm 4) 15 pm	
68.	Heisenberg uncertainty principle can be	1) 2-Chloro-3-methyl-7-bromoheptane
	explained as	2) 7-Bromo-2-chloro-7-methylheptane
	$\Delta \mathbf{x} \ge \frac{\Delta \mathbf{P} \times \mathbf{h}}{\mathbf{h}}$ $\Delta \mathbf{x} \times \Delta \mathbf{P} \ge \frac{\mathbf{h}}{\mathbf{h}}$	3) 1-Bromo-5-methyl-6-chloroheptane
	$\begin{array}{c} \Delta \lambda \geq \overline{4\pi} \\ 1 \end{array} \qquad \begin{array}{c} \Delta \lambda \geq \overline{4\pi} \\ 2 \end{array} \qquad \begin{array}{c} \Delta \lambda \geq \Delta 1 \\ \overline{4\pi} \end{array}$	4) 1-Bromo-6-chloro-5-methyl heptane
	$\Delta \mathbf{x} \times \Delta \mathbf{P} > \frac{\mathbf{h}}{\mathbf{h}}$ $\Delta \mathbf{P} > \pi \mathbf{h}$	75. IUPAC name of $CH_3 - CH_2 - CH - C = CH_2$ is:
	3) 2π 2π 4) $\Delta x = \frac{1}{\Delta x}$	ĊH₂ ĊH₃
69.	Which of the d-orbital lies in the xy-plane?	ĊH ₃
	1) d_{XZ} only 2) d_{XY} only	1) 2-Methyl-3-ethyl-1-pentene
	3) $d_{x^2-v^2}$ only 4) $d_{xv} \& d_{v^2-v^2}$ only	2) 3-Ethyl-4-methyl-4-pentene
	·· , J ^ ,	3) 3-Ethyl-2-methyl-1-pentene
~~~		4) 3-Methyl-2-ethyl-1-pentene

E-TECH ACADEMY MUMBAI 30-09-20	23_YODDHA_2.0_NEET_BOOSTER_TEST-01_QP
76. $CH_2 = CH - is$ called as :	3) 2-Chloro-1-methyl-4-nitrobenzene
1) Isoethyl 2) Ethenyl or vinyl	4) 1-Chloro-2-methyl-5-nitrobenzene
3) s-ethyl 4) Ethene	82. The largest number of molecules is present in 1
77. IUPAC name of the compound	g of
$CH = CH - CHCH_2CH_3$	1) CO ₂ 2) H ₂ O 3) C ₂ H ₅ OH 4) N ₂ O ₅ .
ĊH ₃	83. The empirical formula of a compound of
1) 1-Cyclohexyl-3-methylpent-1-ene	molecular mass 120 is CH ₂ O. The molecular
2) 3-Methyl-5-cyclohexylpent-1-ene	formula of the compound is :
3) 1-Cyclohexyl-3-ethylbut-1-ene	1) C ₂ H ₄ O ₂ 2) C ₄ H ₈ O ₄
4) 1-Cyclohexyl-3,4-dimethylbut-1-ene	3) $C_3H_6O_3$ 4) all of these
78. The correct IUPAC name of compound	84. If 1.5 moles of oxygen combine with Al to form
	Al ₂ O ₃ , the weight of Al used in the reaction is:
	1) 27 g 2) 40.5 g 3) 54g 4) 81 g
1) 1-Chloropentane-1 4-dione	85. The volume of oxygen necessary for the
2) 4-Chlorocarbonylbutan-2-one	complete combusion of 20 litre of propane is :
3) 4-Oxopentanovl chloride	1) 40 litre 2) 60 litre
4) 3-Oxobutanecarbonyl chloride	3) 80 litre 4) 100 litre
$C_2H_5 - O_2$	Part-2 : Chemistry : Section-B (86-100)
79. The IUPAC name of $C = 0$ is : $CH_3 - CH$	Answer Any Ten Questions
l CH ₃	86. The correct order of relative stability of half
1) Ethoxymethanone	filled and completely filled shells is ?
2) Ethyl 2-methylpropanoate	1) $p^3 < d^5 < d^{10} < p^6$
3) Ethoxypropanone	2) $d^5 > n^3 > d^{10} > n^6$
4) 2-Methylethoxypropanone	$2) d^{2} r^{2} r^{3} = d^{10} r^{6}$
80. Common name of the given compound	$5)u$
$CH_3-C-O-CH=CH_2$ is :-	4) $p^{0} < a^{10} < a^{0} < p^{0}$ 97 In which of the following process highest
1) vinvl acetate 2) acrvl acetate	energy is absorbed
3) methyl acrylate 4) Vinyl ethanoate	
NO ₂	1) $Cu \rightarrow Cu'$ 2) $Br \rightarrow Br$
81. has the IUPAC name-	$3) I \rightarrow I^{-} \qquad 4) Li \rightarrow Li^{+}$
CI	88. $^{238}_{92}$ U (IIIB) changes to $^{234}_{90}$ Th by emission of a-
	particle, Daughter element will be in
1) 4-Methyl-5-Chloro-1-nitrobenzene	1) III A 2) I B 3) V B 4) III B
2) 1-Wietnyi-4-nitro-6-Chioro benzene	

### 30-09-2023_YODDHA_2.0_NEET_BOOSTER_TEST-01_QP

89. Match list I with list II & then select the correct answer from the codes given below

	List -	[		List ·	·II		
	(A)	Increasing		(p)	C1 < O < F		
		atomic size					
	(B)	Decreasing	Decreasing		B > Be > Li		
		atomic radiu	S				
	(C)	Increasing		(r)	Si < Al < Mg		
		electronegati	vity				
	(D)	Decreasing		(s)	N > O > F		
		effective nuc	lear				
		charge					
	А	В	С		D		
1)	r	S	р		q		
2)	S	q	r		p		

- 2) s
   q
   r
   p

   3) p
   r
   q
   s

   4) q
   p
   s
   r
- 90. Assertion: *F* atom has a less negative electron affinity than CI atom

**Reason :** Additional electrons are repelled more effectively by 3p electrons in CI atom than by 2pelectrons in F atom

1) If both assertion and reason are true and the reason is the correct explanation of the assertion.

2) If both assertion and reason are true but reason is not the correct explanation of the assertion.

3) If assertion is true but reason is false.

4) If the assertion and reason both are false.

91. Which of the following lanthanoid ions is diamagnetic?

(At nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70) 1) Yb²⁺ 2) Ce²⁺ 3) Sm²⁺ 4) Eu²⁺ 92. Energy levels A, B, C of a certain atom corresponds to increasing values of energy, i.e.,  $E_A < E_B < E_C$ . If  $l_1$ ,  $l_2$  and  $l_3$  are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statement is correct :



93. The correct structure of 6-Amino-4hydroxycyclohex-2-ene-1-sulphonic acid is :



94. Total number of atoms in 196 amu H₂SO₄ are

1) 14 N _A	2) 14
3)7N∆	4) 7

95. Vapour density of a gas if its density is 0.178 g/L at NTP is :

1) 0.178	2) 2
3) 4	4) 0.089

96. The equation :

 $2Al(S) + \frac{3}{2}O_2(g) \rightarrow Al_2O_3(S)$  show that

1) 2 mole of Al reacts with  $\frac{3}{2}$  mole of O₂ to

produce  $\frac{7}{2}$  mole of Al₂O₃

	2) 2g of Al reacts w	with $\frac{3}{2}$ g of O ₂ to produce one	PART-1 : Botany : Section-A (101-135)			
	mole of Al ₂ O ₃		101.Which is the correct statements from the			
	3) $2\sigma$ mole of A1	reacts with $\frac{3}{2}$ litre of O ₂ to	following:			
	5) 2g mole of 74	$\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ to	I. Synapsis of homologous chromosomes takes			
	produce 1 mole of A	A12O3	place during prophase I of meiosis.			
	4) 2 mole of Al r	reacts with $\frac{3}{2}$ mole of O ₂ to	II. Division of centromeres takes place during anaphase I of meiosis.			
	produce 1 mole of A	A12O3	III. Spindle fibres disappear completely in			
97.	When 100g of eth	ylene polymerises entirely to	telophase of mitosis.			
	polyethene, the we	eight of polyethene formed as	IV. Nucleoli reappear at telophase I of meiosis.			
	per the equation n	$(C_2H_4) \rightarrow (-CH_2-CH_2-)_n$ is:	1) I only 2) III only			
	$n(C_2H_4) \rightarrow (-CH_2-$	CH ₂ -) _n .	3) I and II only 4) I, III and IV only			
	1) (n/2)g	2) 100g	102. The longest phase of meiosis I is			
	3) (100/n)g	4) 100ng	1) Metaphase I 2) Prophase I			
98.	10 g of a sample	of a mixture of CaCl ₂ and	3) Anaphase I 4) Telophase I			
	NaCl is treated to	precipitate all the calcium as	103. During meiosis, the crossover occurs between			
	CaCO ₃ . This Ca	CO ₃ is heated to convert all	1) Sister chromatids of homologous			
	the Ca to CaO at	nd the final mass of CaO is	chromosomes			
	1.62 g. The percent by mass of CaCl ₂ in the		2) Non-sister chromatids of homologous			
	original mixture is		chromosomes			
	1) 32 1 %	2) 16 2 %	3) Sister chromatics of non-nomologous			
	3) 21 8 %	4) 11 0 %	(1) Non homologous chromatide of homologous			
99.	One mole of pot	assium chlorate (KClO ₂ ) is	4) Non-nonologous circomatius of nonologous			
	thermally decompo	osed and excess of aluminium	104.G. phase is			
	is burnt in the gase	cous product. How many mol	1) End of mitosis and the start of S-phase			
	of aluminium oxide (Al2O3) are formed ?		2) End of S-phase and the start of mitosis			
	1) 1 2) 1.5		3) Start of S-phase and the start of mitosis			
	3) 2	4) 3	4) End of S-phase and the end of mitosis			
100	.The weight of lim	e obtained by heating 200 kg	105.A cell has 23 pairs of chromosomes just after			
	of 95% pure lime s	tone is :	the completion of mitotic telophase. The			
	- 1) 98.4 kg	2) 106.4 kg	number of chromatids at the preceding			
	3) 112.8 kg	4) 122.6 kg	metaphase was			
			1) 23 2) 46 3) 69 4) 92			

106.Termin	alization oc	curs during			during cy	tokin	nesis				
1) Mito	sis	2) Diakinesis			1) 1	2) 2	3	5) 3	4) 4	1	
3) Cyto	cinesis	4) Meiosis II		112	.Assertio	n: (	Chiasma	ata	is for	rmed	during
107.Tetrad	s made of				diplotene	2.					
1) Four	non-homolo	ogous chromatids			Reason:	Chi	asmata	are	formed	due	to the
2) Four	non-homolo	ogous chromosom	nes		depositio	n of 1	nucleopr	otein	s.		
3) Fou	homologo	ous chromosome	s with four		1) If bot	h the	assertio	on an	d the r	eason	are true
chroma	ids				and the	reaso	on is a	correc	ct expla	anatior	ı of the
4) Two	homologou	s chromosomes ar	nd each with		assertion	•					
two chr	omatids				2) If bot	h the	assertio	on an	d reaso	n are	true but
108.The cel	lular struct	ure which always	s disappears		the reas	on is	not a	correc	ct expla	nation	ı of the
during	nitosis or n	neiosis is			assertion	•					
1) Plast	ds				3) If the	assert	ion is tru	ie but	t the rea	ison is	false.
2) Plasr	1a membrar	ne			4) If both	the a	assertion	and	reason	are fals	se.
3) Nucl	eolus and nu	ıclear envelope.		113	.Select th	e inco	orrect st	atem	ent:		
4) None	of these				1) Micro	bodi	es conta	in va	rious ei	nzyme	and are
109. Select the correct statement from the following:		present in both plant and animal cells.									
1) In le	1) In leptotene stage the chromosomes become			2) Few chromosomes have non-staining							
gradually visible under light microscope.			secondar	y con	strictior	n of c	onstant	locatio	on. This		
2) During zygotene the heterologous			give the	appe	arance	of a s	small fi	agmen	it called		
chromosome shows pairing.			the satell	ite.							
3) Chiasmata is a J-shape structure formed in		3) Nuclei are spherical structures present in									
diploter	e.			nucleoplasm and it is a site for ribosomal RNA							
4) Pach	ytene is cha	racterized by the	formation of		synthesis.						
synapto	nemal comp	plex.			4) Eve	ry c	chromos	ome	essent	tially	has a
110.Most o	the cell org	ganelle duplicates	during		secondary constriction or the centromere on the						
1) G ₁ pl	lase	2) S-phase			sides of	whi	ch disc	shap	ped str	uctures	s called
3) G ₂ pl	lase	4) M-phase			kinetoch	ores a	are prese	nt.			
111.Select t	ne total nun	nber of correct sta	atement:	114	.Match tl	ne col	umn:				
I. Cell-j	late formati	ion occurs in plan	t cell during	Co	lumn I			Co	lumn I	[	
cytokin	esis.			Α.	Metacent	ric	1. M	[iddle	centro	mere	
II. During cytokinesis mitochondria and plastid gets		chr	omosoma	.1							
distribut	distributed between two daughter cells in mitosis.		n mitosis.	В. 5	Sub-metao	centrio	c 2. C	entro	mere sli	ghtly v	way
III. Liq	III. Liquid endosperm in coconut is syncytium.		yncytium.				from	n mide	dle		
IV. Fur	ow formation	on occurs in Anin	nal cell	•							

							· · · · ·	
C. Acrocentric	3. Centromere close to its end	120	.Which	of the	following	wall is	capable of	
D. Telocentric	4. Terminal centromere		growth	in a plan	t cell?			
1) A-1, B-2, C-3, I	1) A-1, B-2, C-3, D-4			1) Primary wall 2) Secondary wall				
2) A-2, B-1, C-3, I	2) A-2, B-1, C-3, D-4			(1) and (2	2) 4) Mide	dle lamell	a	
3) A-1, B-2, C-4, I	D-3	121	.How m	any of th	e following	g are not	included in	
4) A-4, B-3, C-2, I	D-1		endome	mbrane	system?			
115.Select the incorre	ct statement:		Endopla	ismic 2	Reticulum,	Golgi	complex,	
1) Cilia and flage	ella are hair-like outgrowths of		Lysosome, Mitochondria, Chloroplast, Vacuoles,					
the cell membrane			Peroxiso	omes				
2) Cilia causes the	e movement of either the cell or		1) 2	2) 3	3) 4	4) 5		
the surrounding m	nedium.	122	.The fun	ctions of	f cell wall ir	n eukaryo	tic cells	
3) Bacterial flage	ella are structurally similar to		1) Give	shape to	cell			
eukaryotic flagella	l.		2) Preve	ent from 1	mechanical	damage		
4) Flagella is respo	onsible for cell movement.		3) Prote	cts from	infection			
116.Which of the	following is true about the		4) All of these					
internal structure	of axoneme?	123	123. Which of the following represent prokaryotic					
1) Central sheath	n is connected to one of the	<b>—</b> •	cell?					
tubule of each peripheral doublets by a radial			1) Blue-	green alg	ae 2) PPL	0		
spoke.			3) Bacte	ria	4) All c	of these		
2) Axoneme is not covered by plasma membrane			.The lon	gest cells	s in human	body are		
at all.			1) Musc	le cells	2) Card	liac musc	le cells	
3) Then are only a	and radial spokes are found.	AUA	3) Neurons 4) None of these					
4) Peripheral dou	ublets are not connected with	125	.Who w	as the	German bo	tanist to	study the	
each other.			differen	t cells fo	rming plant	t tissues?		
117. The types of ribo	some present in eukaryote cell		1) Schle	iden	2) Schv	vann		
is			3) Rudo	lf Vircho	w 4) Non	e of these		
1) 70S	2) 80S	126	.Which	of the f	ollowing p	igments	is essential	
3) Both (1) and (2)	) 4) None of these		for the	nitrogen	fixation by	legumino	ous plants?	
118. The contractile vacuole present in amoeba is			1) Anth	ocyanin	2) Phyc	cocyanin		
useful for			3) Phyce	oerythrin	4) Legh	aemoglol	bin	
1) Ingestion	2) Locomotion	127	.Knot lil	ke bodies	s known as	'nodules	' are found	
3) Both (1) and (2)	) 4) Excretion		in the r	oots of	groundnut	plant it i	s produced	
119.In 30S and 40S ri	bosomes, 'S' stands for		by					
1) Sub-unit	2) Svedberg's unit		1) Azos	pirillum	2) Azot	obacter		
3) Single unit	4) Size		3) Pseud	lomonas	4) Rhiz	obium		

### 30-09-2023_YODDHA_2.0_NEET_BOOSTER_TEST-01_QP

### 128. Phosphorus is a structural element in

1) Fat 2) Starch

3) Nucleotide 4) Carbohydrate

# 129. The most abundent element present in the plants is

- 1) Manganese 2) Iron
- 3) Carbon 4) Nitrogen

### 130. Function of zinc is

- 1) Synthesis of chlorophyll
- 2) Biosynthesis of IAA
- 3) Closing of stomata
- 4) Oxidation of carbohydrate

### 131. The death of stem and root tips occur due to the

### deficiency of

Calcium
_

3) Nitrogen 4) Carbon

### 132. Which elements are relatively immobilized?

3) S and Ca 4) N and Mg

### 133. What is critical concentration?

- 1) Concentration of essential element which causes flowering in plants.
- 2) Concentration of essential element which is easily absorbed by plants.
- 3) Concentration of essential element below which the plant growth is retarded.

4) All the above

# 134. Which is the main amino acid that is used for transamination?

1) Tyrosine	2) Proline
3) Glutamic acid	4) Alanine

# 135. The enzyme nitrogenase is

1) Mo-Fe protein

2) Mo-Mn protein

3) Mn-Fe protein 4) Cu-Fe protein

### PART-2 : Botany : Section-B (136-150)

### Answer Any Ten Questions

136. Which element is involved in the formation of mitotic spindle?

1) N 2) P 3) Ca 4) K

- 137. What is the number of the absolutely essential elements for growth and metabolism of all plants?
  - 1) 14 2) 17 3) 21 4) 23
- 138. Identify the A and B shown in this figure.



- 1) A-DNA, B-Capsid 2) A-RNA, B-DNA
- 3) A-Capsid, B-RNA4) A-RNA, B-Capsid

# 139.In lichen, the algal component is called_and

### fungal component is called _____

- 1) mycobiont, phycobiont
- 2) phycobiont, mycobiont
- 3) phycobiont, mycorrhazia
- 4) mycorrhaiza, mycobiont

### 140. Virus infected plants generally have

- 1) Single stranded DNA
- 2) Double stranded DNA
- 3) Double stranded RNA
- 4) Single stranded RNA

### 141.Potato spindle tuber disease is caused by

1) Virus 2) Viroids 3) Lichens4) Fungi

142.Karyogamy and meiosis occurs in basidium produces_basidiospores.

1) 1 2) 2 3) 3 4) 4

143. Which of the following is extensively used in	150.In which year Whittaker proposed the five				
biochemical and genetic work?	kingdom classification?				
1) Aspergillus 2) Claviceps	1) 1960 2) 1959 3) 1969 4) 1979				
3) Neurospora 4) Penicillium	Part-1 : Zoology : Section-A (151-185)				
144. The following fungus belongs to class	151. The figure given below shows the conversion				
ascomycetes (count the total number).	of a substrate into product by an enzyme. In				
Rhizopus, Penicillium, Yeast, Mucor,	which one of the options (a to d) the				
Agaricus, Puccinia, Albugo, Claviceps,	components of reaction labelled as A, B, C and				
Neurospora, Alternaria, Trichoderma,	D are identified correctly?				
Aspergillus, Ustilago, Morels, Buffles,	. В				
Colletotrichum, Toadstool					
1) 5 2) 7 3) 9 4) 10					
145. Euglenoids have flexible body because of	A Substrate (s)				
1) Cellulosic wall 2) Protein rich pellicle					
3) Lipoic wall 4) Pectinic wall	Product (p)				
146. Sleeping sickness is caused by	Progress of reaction				
1) Plasmodium 2) Paramoecium	A B C D E				
3) Trypanosoma 4) Entamoeba	Potential Transition Activation				
147.Motile bacteria possess	1) energy state energy with energy without				
1) Cilia 2) Flagella	enzyme enzyme				
3) Both (1) and (2) 4) None of these	Activation				
148. Which one is correct about reproduction in	2) Iransition Potential energy Activation with				
bacteria?	enzyme				
1) Mainly by binary fission	Activation				
2) Spores are formed under unfavorable	Potential Transition energy Activation with				
condition	³⁾ energy state without energy enzyme				
3) Sexual reproduction by transfer of DNA from	enzyme				
one to another	Activation Activation				
4) All of these	energy Transition energy Potential				
149. Aristotle classified plants in herbs, shrubs and	with state without energy				
trees on the basis of	152 Hoom is a prosthatic group of anywe				
1) Anatomical feature	1) Perovidase 2) Catalaca				
2) Morphological characters	1) $\Gamma$ CIUXIUASC 2) Catalast 3) Both (1) and (2) 4) None of these				
3) Physiological characters	5) Both (1) and (2) 4) None of these				
4) Biochemical characters					

### 30-09-2023_YODDHA_2.0_NEET_ BOOSTER_TEST-01_QP

153. Which one of the graphs shows the effect of	3) It is used to form DNA.				
temperature on the enzymatic activity?	4) It is used to form RNA.				
	157.Sugar + Nitrogen bases + Phosphate forms				
EA	1) Nucleoside 2) Nucleotide				
1) Temperature 2) Temperature	3) Peptide 4) Glycoside				
	158. The most abundant protein in whole biosphere				
EA EA	is				
2) Temperature () Temperature	1) RuBisCO 2) Collagen				
	3) Elastin 4) Albumin				
154. $CO_2 + H_2O \Leftrightarrow H_2CO_3$	159. How many amino-acids are used to form				
	protein?				
which one of the following statement is	1) 18 2) 20 3) 21 4) 22				
incorrect about the above reaction?	160. The bond formed between two adjacent				
1) In the absence of enzyme, the rate of $H_2CO_3$	monosaccharide is				
2) When each onic an hydroge set always the same	1) Peptide bond 2) Ester bond				
2) when carbonic annydrase catalyses the same	3) Glycosidic bond 4) Ionic bond				
feature is no change in the rate of $H_2CO_3$	161of the total cell mass is formed by ions.				
3) The reaction catalyzed by the enzyme shows	1) 1% 2) 2% 3) 3% 4) 4%				
dramatically higher decrease speed about	162. Which of the following is homopolysaccharide?				
600,000 molecules being formed every second	1) Cellulose 2) Inulin				
(rate becomes 10 million times more)	3) Starch 4) All of these				
(late becomes to minion times more). 4) The enzymes carbonic anhydrase occurs in	<ul> <li>163.In the primary structure of protein</li> <li>1) Left end represents → 1st amino acid (C-terminal amino acid)</li> </ul>				
abundance of RBC's					
155. Which one of the following is a secondary					
metabolite?	2) Right end represents $\rightarrow$ Last amino acid (N				
1) Amino acid 2) Sugar	terminal amino acid)				
3) Flavonoides and antibiotics 4) Protein	3) Left end represents $\rightarrow$ 1st amino acid (N-				
156. Which one is correct about the following	terminal amino acid)				
diagram?	4) Right end represents $\rightarrow$ 1st amino acid (C-				
HOCH, Adenine	terminal amino acid)				
	164. Which of the following multiply through				
	fragmentation?				
OH OH	1) Fungi 2) Filamentous algae				
1) It is a nucleotide.	3) Planaria4) All of these				
21 It contains pyrininging introzen dase.					

165. Which of the follo	wing is self-conscious?	173.Heart beat is accelerated by –					
1) Human being	2) Tiger	1) Cranial nerves and acetylcholine					
3) Lion	4) Frog	2) Sympathetic nerves and acetylcholine					
166.Metabolic reaction	is take place	3) Cranial nerves and adrenaline					
1) In vitro	2) In vivo	4) Sympathetic nerves and epinephrine					
3) both (1) and (2)		174. Which one of the following is the correct route					
4) only in unicellul	ar organisms	through which impulse travels in the heart?					
167.Zoological name o	f house fly is	1) SA node $\rightarrow$ Purkinje fibres $\rightarrow$ Bundle of His					
1) Mangifera indica	a	$\rightarrow$ AV node $\rightarrow$ Heart muscles					
2) Solanum tuberos	sum	2) AV node $\rightarrow$ SA node $\rightarrow$ Purkinje fibres $\rightarrow$					
3) Solanum melong	gena	Bundle of His $\rightarrow$ Heart muscles					
4) Musca domestic	a	3) AV node $\rightarrow$ Bundle of His $\rightarrow$ SA node $\rightarrow$					
168.IBG is situated at		Purkinje fibres →Heart muscles					
1) Kew	2) Howrah	4) SA node $\rightarrow$ AV node $\rightarrow$ Bundle of His $\rightarrow$					
3) Lucknow	4) Jodhpur	Purkinie fibres $\rightarrow$ Heart muscles.					
169. The keys are base	ed on contrasting characters	175. The cardiac pacemaker in a patient fails to					
generally in pairs o	called	function normally. The doctors find that an					
1) Duplex	2) Couplet	artificial pace maker is to be grafted in him. It					
3) Dimer	4) All of these	is likely, that it will be grafted, at the site of –					
170. The blood returning to the heart from lungs via		1) Sinoatrial node					
pulmonary veins is rich in –		2) Atrioventricular node					
1) Number of RBC	s per ml of blood	3) Atrioventricular bundle					
2) Haemoglobin pe	r ml of blood	4) Purkinje fibres					
3) Oxygen per ml c	of blood	176. The wall of heart is made up of					
4) Nutrients per ml	of blood	1) Epicardium 2) Myocardium					
171.In heart of mamm	als, inpulses are initiated by	3) Endocardium 4) All of the above					
SA node. This type	e of heart is called as –	177.Bundle of His is a network of –					
1) Cholinergic	2) Adrenergic	1) Nerve fibres found throughout the heart					
3) Neurogenic	4) Myogenic	2) Muscle fibres distributed throughout the heart					
172.Epinephrine is sec	reted by-	walls					
1) Adrenal medulla	and increases heart rate	3) Muscle fibres found only in the					
2) Adrenal medulla	and decreases heart rate	interventricular septum					
3) Adrenal cortex a	nd increases heart rate	4) Nerve fibres distributed in the ventricles					
4) Adrenal cortex a	ind decreases heart rate						

### 30-09-2023 YODDHA 2.0 NEET BOOSTER TEST-01 QP

nutrition

reproduction

and

178.Match blood vessels of human heart listed 183. The vagus nerve, on stimulation, will cause under column-I with functions given under heart rate to -Column-II; Choose the answer which gives 1) Decrease 2) Increase correct combination of the alphabets of two 3) Remian unchanged 4) None of these 184. Cardiac output is determined by columns Column I (Blood 1) Heart rate 2) stroke volume Column II (Function) Vessel) Superior vena cava Carries deoxygenated blood to lungs 3) blood flow 4) Both (1) and (2) Α р в Inferior vena cava Carries oxygenated blood to lungs q 185. Which type of white blood cells are concerned Bring deoxygenated blood from lower parts of the body С Pulmonary artery r to the right atrium with the release of histamine and heparin? D Pulmonary vein Brings oxygenated blood to the left atrium s Brings deoxygenated blood from upper parts of the body t 1) Neutrophils 2) Basophils into the right atrium 3) Eosinophils 1) A = t, B = p, C = r, D = q4) Monocytes Part-2 : Zoology : Section-B (186-200) 2) A = t, B = r, C = p, D = s3) A = s, B = t, C = r, D = pAnswer Any Ten Questions 4) A = t, B = s, C = r, D = p186. The bundle of His sends electric impulse to the 179.Blood returns from lungs to the -1) AV node 2) SA node 1) Right atrium 2) Right ventircle 3) Purkinje fibres 4) Atria 3) Left ventricle 4) Left atrium 187. Average life span of an RBC is artifical 180.An pacemaker is implanted 1) 50 days 2) 70 days subcutaneously and connected to the heart in 3) 120 days 4) 220 days patients – 188. Which of the following pairs is not correctly 1) Having 90% blockage of the three main matched? coronary arteries 1) Amoebocytes - Transport food to non-feeding 2) Having high blood pressure cells 3) With irregularity in the heart beat rhythm 2) Collar cells – Movement of water and filtering 4) Suffering from arteriosclerosis food 181.Mitral valve in mammals guards the opening 3) Osculum – Control of water entry between -4) Spicules – Skeletal supporting element 1) Stomach and intestine 189. Sponges need a continuous current of water 2) Pulmonary vein and left atrium flowing through their bodies for-3) Right atrium and right ventricle 1) Respiration 4) Left atrium and left ventricle 2) Respiration and excretion 182. During allergic disorder there is increase in the 3) Respiration, excretion and reproduction number – Respiration, excretion, 4)

18

1) Lymphocytes

3) Eosinophils

2) Basophils

4) Neutrophils

#### **E-TECH ACADEMY MUMBAI** 30-09-2023 YODDHA 2.0 NEET BOOSTER TEST-01 QP 190. Ctenophores have similarities with members 198. Representative of Hemichordata is of-1) Scoliodon 2) *Myxine* 1) Porifera 2) Annelida 3) Balanoglossus 4) Petromyzon 3) Coelenterata 4) Arthropoda 199. Which of the following is not found in 191. Absence of circulatory system in Hydra is vertebrates? compensated by 1) Bilateral symmetry 1) Pseudocoelomic fluid 2) Gill openings 2) Gastrovascular cavity 3) Body scales 3) Presence of tentacles 4) Cnidoblasts 4) None of these 200. Which one of the following animals has a 192.Pseudocoelom is not found in notochord throughout its life? 1) Ascaris 1) Fish 2) Bird 2) Ancylostoma 3) Snake 4) *Amphioxus* 3) Fasciola 4) Enterolobius 193. Wuchereria bancrofti is transmitted by the bite of-1) Culex 2) Anopheles 3) Tsetse fly 4) Sand fly 194.Locomotion occurs in earthworm through-1) setae 2) parapodia 3) setae and circular muscles 4) setae, circular and longitudinal muscles 195.Organs of locomotion in Echinoderms are-1) Pseudopodia 2) Parapodia 4) Tube feet 3) Foot 196. Radial symmetry is found in -1) Anopheles 2) Snail 3) Cockroach 4) Asterias 197.An unsegmented animal with coelom, radial symmetry, distinct oral and aboral surfaces is a member of-1) Porifera 2) Mollusca 3) Echinodermata 4) Arthropoda

# PACE FOR ROUGH WORK